How to win with cisco 300 101 dump


♥♥ 2017 NEW RECOMMEND ♥♥

Free VCE & PDF File for Cisco 300-101 Real Exam (Full Version!)

★ Pass on Your First TRY ★ 100% Money Back Guarantee ★ Realistic Practice Exam Questions

Free Instant Download NEW 300-101 Exam Dumps (PDF & VCE):
Available on: https://www.certleader.com/300-101-dumps.html


300-101 Product Description:
Exam Number/Code: 300-101 vce
Exam name: Implementing Cisco IP Routing
n questions with full explanations
Certification: Cisco Certification
Last updated on Global synchronizing

Instant Access to Free VCE Files: Cisco 300-101 Implementing Cisco IP Routing

300-101 examcollection

Real of ccnp route 300 101 dumps braindumps materials and braindump for Cisco certification for IT specialist, Real Success Guaranteed with Updated route 300 101 pdf dumps vce Materials. 100% PASS Implementing Cisco IP Routing exam Today!

Q1. Which three items can you track when you use two time stamps with IP SLAs? (Choose three.) 

A. delay 

B. jitter 

C. packet loss 

D. load 

E. throughput 

F. path 

Answer: A,B,C


Q2. A network engineer executes the “ipv6 flowset” command. What is the result? 

A. Flow-label marking in 1280-byte or larger packets is enabled. 

B. Flow-set marking in 1280-byte or larger packets is enabled. 

C. IPv6 PMTU is enabled on the router. 

D. IPv6 flow control is enabled on the router. 

Answer:

Explanation: 

Enabling Flow-Label Marking in Packets that Originate from the Device This feature allows the device to

track destinations to which the device has sent packets that

are 1280 bytes or larger.

SUMMARY STEPS

1.enable

2.configure terminal

3.ipv6 flowset

4.exit

5.clear ipv6 mtu

DETAILED STEPS

Command or Action Purpose

Step 1 enable Enables privileged EXEC mode.

Enter your password if prompted.

Example:

Device> enable

Step 2 configure terminal Enters global configuration mode.

Example:

Device# configure

terminal

Step 3 ipv6 flowset Configures flow-label marking in 1280-byte or larger packets sent by the device.

Example:

Device# configure

terminal

Step 3 ipv6 flowset Configures flow-label marking in 1280-byte or larger packets sent by the device.

Example:

Device(config)# ipv6

flowset

Reference: http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipv6_basic/configuration/15- mt/ip6b-15-mtbook/ip6-mtu-path-disc.html


Q3. Which Cisco IOS VPN technology leverages IPsec, mGRE, dynamic routing protocol, NHRP, and Cisco Express Forwarding? 

A. FlexVPN 

B. DMVPN 

C. GETVPN 

D. Cisco Easy VPN 

Answer:

Explanation: Dynamic Multipoint Virtual Private Network (DMVPN) is a dynamic tunneling form of a virtual

private network (VPN) supported on Cisco IOS-based routers and Unix-like Operating Systems based on

the standard protocols, GRE, NHRP and IPsec. This DMVPN provides the capability for creating a

dynamic-mesh VPN network without having to pre-configure (static) all possible tunnel end-point peers,

including IPsec (Internet Protocol Security) and ISAKMP (Internet Security Association and Key

Management Protocol) peers. DMVPN is initially configured to build out a hub-and-spoke network by

statically configuring the hubs (VPN headends) on the spokes, no change in the configuration on the hub is

required to accept new spokes. Using this initial hub-and-spoke network, tunnels between spokes can be

dynamically built on demand (dynamic-mesh) without additional configuration on the hubs or spokes. This

dynamic-mesh capability alleviates the need for any load on the hub to route data between the spoke

networks. DMVPN is combination of the following technologies:

Multipoint GRE (mGRE)

Next-Hop Resolution Protocol (NHRP)

Dynamic Routing Protocol (EIGRP, RIP, OSPF, BGP)

Dynamic IPsec encryption

Cisco Express Forwarding (CEF)

Reference: http://en.wikipedia.org/wiki/Dynamic_Multipoint_Virtual_Private_Network

Topic 5, Infrastructure Security 

53. Which traffic does the following configuration allow? 

ipv6 access-list cisco 

permit ipv6 host 2001:DB8:0:4::32 any eq ssh 

line vty 0 4 

ipv6 access-class cisco in 

A. all traffic to vty 0 4 from source 2001:DB8:0:4::32 

B. only ssh traffic to vty 0 4 from source all 

C. only ssh traffic to vty 0 4 from source 2001:DB8:0:4::32 

D. all traffic to vty 0 4 from source all 

Answer:

Explanation: 

Here we see that the IPv6 access list called "cisco" is being applied to incoming VTY connections to the

router. IPv6 access list has just one entry, which allows only the single IPv6 IP address of 2001:DB8:0:4::32 to connect using SSH only.


Q4. Two aspects of an IP SLA operation can be tracked: state and reachability. Which statement about state tracking is true? 

A. When tracking state, an OK return code means that the track's state is up; any other return code means that the track's state is down. 

B. When tracking state, an OK or over threshold return code means that the track's state is up; any other return code means that the track's state is down. 

C. When tracking state, an OK return code means that the track's state is down; any other return code means that the track's state is up. 

D. When tracking state, an OK or over threshold return code means that the track's state is down; any other return code means that the track's state is up. 

Answer:

Explanation: 


Q5. Which technology was originally developed for routers to handle fragmentation in the path between end points? 

A. PMTUD 

B. MSS 

C. windowing 

D. TCP 

E. global synchronization 

Answer:

Explanation: 


Q6. Which two actions must you perform to enable and use window scaling on a router? (Choose two.) 

A. Execute the command ip tcp window-size 65536. 

B. Set window scaling to be used on the remote host. 

C. Execute the command ip tcp queuemax. 

D. Set TCP options to "enabled" on the remote host. 

E. Execute the command ip tcp adjust-mss. 

Answer: A,B 

Explanation: 

The TCP Window Scaling feature adds support for the Window Scaling option in RFC 1323,

TCP Extensions for High Performance . A larger window size is recommended to improve TCP performance in network paths with large bandwidth-delay product characteristics that are called Long Fat

Networks (LFNs). 

The TCP Window Scaling enhancement provides that support. The window scaling extension in Cisco IOS software expands the definition of the TCP window to 32 bits and then uses a scale factor to carry this 32-bit value in the 16-bit window field of the TCP header. 

The window size can increase to a scale factor of 14. Typical applications use a scale factor of 3 when deployed in LFNs. 

The TCP Window Scaling feature complies with RFC 1323. The larger scalable window size will allow TCP to perform better over LFNs. 

Use the ip tcp window-size command in global configuration mode to configure the TCP window size. In order for this to work, the remote host must also support this feature and its window size must be increased. 

Reference: http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipapp/

configuration/12-4t/iap-12- 4t-book/iap-tcp.html#GUID-BD998AC6-F128-47DD-B5F7-B226546D4B08


Q7. A corporate policy requires PPPoE to be enabled and to maintain a connection with the ISP, even if no interesting traffic exists. Which feature can be used to accomplish this task? 

A. TCP Adjust 

B. Dialer Persistent 

C. PPPoE Groups 

D. half-bridging 

E. Peer Neighbor Route 

Answer:

Explanation: 

A new interface configuration command, dialer persistent, allows a dial-on-demand routing (DDR) dialer

profile connection to be brought up without being triggered by interesting traffic. When configured, the dialer persistent command starts a timer when the dialer interface starts up and starts the connection when the timer expires. If interesting traffic arrives before the timer expires, the connection is still brought up and set as persistent. The command provides a default timer interval, or you can set a custom timer interval. To configure a dialer interface as persistent, use the following commands beginning in global configuration mode:

Command Purpose

Step 1 Router(config)# interface dialer Creates a dialer interface and number enters interface

Configuration mode.

Step 2 Router(config-if)# ip address Specifies the IP address and mask address mask of the dialer

interface as a node in the destination network to be called.

Step 3 Router(config-if)# encapsulation Specifies the encapsulation type.

type

Step 4 Router(config-if)# dialer string Specifies the remote destination to dial-string class class-name call

and the map class that defines characteristics for calls to this destination.

Step 5 Router(config-if)# dialer pool Specifies the dialing pool to use number for calls to this destination.

Step 6 Router(config-if)# dialer-group Assigns the dialer interface to a group-number dialer group.

Step 7 Router(config-if)# dialer-list Specifies an access list by list dialer-group protocol protocol- number or

by protocol and list name {permit | deny | list number to define the interesting access-list-number} packets that can trigger a call. Step 8 Router(config-if)# dialer

(Optional) Specifies the remote-name user-name

authentication name of the remote router on the destination subnetwork for a dialer interface.

Step 9 Router(config-if)# dialer Forces a dialer interface to be persistent [delay [initial] connected at all

times, even in seconds | max-attempts the absence of interesting traffic.

number]

Reference:

http://www.cisco.com/c/en/us/td/docs/ios/dial/configuration/guide/12_4t/dia_12_4t_book/dia_dia

ler_persist.html


Q8. Which Cisco VPN technology uses AAA to implement group policies and authorization and is also used for the XAUTH authentication method? 

A. DMVPN 

B. Cisco Easy VPN 

C. GETVPN 

D. GREVPN 

Answer:

Explanation: 


Q9. Under which condition does UDP dominance occur? 

A. when TCP traffic is in the same class as UDP 

B. when UDP flows are assigned a lower priority queue 

C. when WRED is enabled 

D. when ACLs are in place to block TCP traffic 

Answer:

Explanation: 

Explanation: Mixing TCP with UDP It is a general best practice to not mix TCP-based traffic with UDPbased

traffic (especially Streaming-Video) within a single service-provider class because of the behaviors

of these protocols during periods of congestion. Specifically, TCP transmitters throttle back flows when

drops are detected. Although some UDP applications have application-level windowing, flow control, and

retransmission capabilities, most UDP transmitters are completely oblivious to drops and, thus, never lower

transmission rates because of dropping. When TCP flows are combined with UDP flows within a single

service-provider class and the class experiences congestion, TCP flows continually lower their

transmission rates, potentially giving up their bandwidth to UDP flows that are oblivious to drops. This

effect is called TCP starvation/UDP dominance. TCP starvation/UDP dominance likely occurs if (TCP-based) Mission-Critical Data is assigned to the same service-provider class as (UDP-based) Streaming-

Video and the class experiences sustained congestion. Even if WRED is enabled on the service-provider

class, the same behavior would be observed because WRED (for the most part) manages congestion only

on TCP-based flows. Reference: http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/

WAN_and_MAN/QoS_SRND/QoS- SRND-Book/VPNQoS.html

Topic 2, Layer 2 Technologies 

13. Prior to enabling PPPoE in a virtual private dialup network group, which task must be completed? 

A. Disable CDP on the interface. 

B. Execute the vpdn enable command. 

C. Execute the no switchport command. 

D. Enable QoS FIFO for PPPoE support. 

Answer:

Explanation: 

Enabling PPPoE in a VPDN Group

Perform this task to enable PPPoE in a virtual private dial-up network (VPDN) group.

Restrictions

This task applies only to releases prior to Cisco IOS Release 12.2(13)T.

SUMMARY STEPS

1.enable

2.configure terminal

3.vpdn enable

4.vpdn-group name

5.request-dialin

6.protocol pppoe DETAILED STEPS Command or Action Purpose Step 1 enable Enables privileged EXEC

mode. Example: · Enter your password if Router> enable prompted. Step 2 configure terminal Enters

global configuration mode. Example: Router# configure terminal Step 3 vpdn enable Enables virtual private

dialup Example: networking. Router(config)# vpdn enable Step 4 vpdn-group name Associates a VPDN

group with a Example: customer or VPDN profile. Router(config)# vpdn-group group1 Step 5 request-dialin

Creates a request-dialin VPDN Example: subgroup. Router(config-vpdn)# request-dialin Step 6 protocol

pppoe Enables the VPDN subgroup to Example: establish PPPoE Router(config-vpdn-req-in)# pro tocol

pppoe

Reference:

http://www.cisco.com/en/US/docs/ios/12_2t/12_2t2/feature/guide/ftpppoec_support_TSD_Island

_of_Content_Chapter.html


Q10. You have been asked to evaluate how EIGRP is functioning in a customer network. 

What percent of R1’s interfaces bandwidth is EIGRP allowed to use? 

A. 10 

B. 20 

C. 30 

D. 40 

Answer:

Explanation: 



To know more about the Implementing Cisco IP Routing, click here.